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The stability of pendent liquid drops. 
Part 1. Drops formed in a narrow gap 
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(Received 28 September 1972 and in revised form 22 February 1973) 

We consider a drop of liquid hanging from a horizontal support and sandwiched 
between two vertical plates separated by a very narrow gap. Equilibrium pro- 
files of such ‘two-dimensional’ drops were calculated by Neumann (1894) for the 
case when the angle of contact between the liquid and the horizontal support is 
zero. This paper gives the equilibrium profiles for other contact angles and the 
criterion for their stability. Neumann showed that, as the drop height increases, 
its cross-sectional area increases until a maximum is reached. Thereafter, as the 
height increases, the equilibrium area decreases. This behaviour is shown to be 
typical of all contact angles. When the maximum area is reached, the total 
energy is a minimum. It is shown that the drops are stable as long as the height 
and the area increase together. 

1. Introduction 
The growth of a drop of liquid hanging from a support was studied by a num- 

ber of workers in the early years of the century and many of their findings have 
been summarized by Bakker (1928). Besides its practical application in the mea- 
surement of surface tension, the subject was also of interest because of the mathe- 
matical problem of the calculation of the shape of the drop. This is determined by 
the equilibrium of the forces due to the weight of the liquid, the pressure and the 
surface tension. As the drop grows in size, its weight eventually cannot be 
balanced by surface tension forces. One aim of the early work was to calculate the 
maximum equilibrium volume attainable before the drop breaks and liquid falls. 
However, the impossibility of balancing the forces is not the only conceivable 
cause of the breaking of the drop, which could happen as a result of the equili- 
brium becoming unstable. This possibility has been largely ignored, but recently 
Padday (1971) and Padday & Pitt (1973) have examined this question. They used 
purely numerical methods, which, although informative in many ways, never- 
theless cannot fully reveal the behaviour of the perturbed drop. It therefore 
seemed appropriate to attempt a theoretical analysis of the equilibrium and 
stability of hanging drops. 

As a particular example, we may consider the condensation of water to form 
drops on a ceiling. In order that a stable drop may contain a given volume of 
water, there are two distinct theoretical requirements. First, it  must be possible 
to find a physically realizable drop shape which satisfies the conditions of equili- 
brium. The second requirement concerns the change in the the total energy of the 
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FIGURE 1. The two-dimensional drop. The thickness DE is greatly exaggerated. 

drop when its equilibrium is slightly disturbed. If the disturbance increases 
the total energy, we may expect the drop to return to the equilibrium from which 
it has departed, since it represents a state of lower energy. If this disturbance 
decreases the total energy, such a return will no longer occur and the drop will 
be unstable. 

For hanging drops (which are axially symmetric) the analysis immediately 
poses a severe difficulty, because the solutions of the basic equations of equili- 
brium cannot be expressed in terms of known functions. For this reasonit 
appeared prudent to make a preliminary study of a simpler example, for which the 
equilibrium drop profiles can be expressed in known functions and which can also 
be realized experimentally. The features revealed in this case are in fact helpful 
in understanding the behaviour of axially symmetric drops, which will be de- 
scribed in a later paper. 

We shall consider a 'two-dimensional' drop which hangs below a horizontal 
surface with which it maintains a given contact angle, and which is sandwiched 
between two vertical parallel glass plates which are very close to each other (see 
figure 1, in which the separation of the plates is greatly exaggerated). Since 
the separation is very small the profile of the meniscus across the gap between 
the walls will generally be very close to a circular arc, of constant curvature, 
which will not affect the profile in the vertical plane; indeed if the angle of 
contact of the liquid and the vertical wall is exactly go", the meniscus will be a 
cylindrical surface through DOPC. We shall study the behaviour of such a 
meniscus assuming that the gap is so narrow that the surface cannot be 
disturbed along the direction perpendicular to the vertical plane. We suppose 
that the liquid is introduced through a narrow tube which is closed when a given 
volume has been inserted below the support. The first problem is to find the 
equilibrium profiles and the volume they contain, which is equivalent to finding 
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FIGURE 2. The co-ordinate system. 

their cross-sectional area. The next problem is to determine whether these 
equilibria are stable. We shall consider disturbances of the two-dimensional 
drop which are analogous to those likely to be experienced by a drop hanging 
from a ceiling, that is, the volume will be held constant, but the profile of the 
drop and its length in contact with the horizontal support DC will be varied. 

The equilibrium shapes of two-dimensional drops essentially of this kind were 
studied by Neumann (1894) for liquids having a zero contact angle with the 
horizontal support. He showed that their cross-section grows to a maximum 
beyond which no equilibria exist, and below which for a given area there are 
two possible profiles. He appeared to regard both profiles as being stable. 
Wangerin in a note added to Neumann’s article contradicted this. Unfortunately 
it has not been possible to discover whether Wangerin published his work. Bakker 
(1928) refers only to Neumann and Wangerin and since that time no further work 
appears to have been done to clarify the situation. 

In  this paper the problem will be examined by the methods of the calculus 
of variations, which permit a unified approach to the determination of the 
equilibrium and its stability. The vanishing of the first variation of the total 
energy gives rise to the equations for equilibrium, and the criteria for stability 
are derived from the second variation. 

2. The equilibrium profiles 
In  order to carry out the variational treatment we need an expression for the 

total energy of the drop. Figure 2 shows the vertical cross-section of half of the 
48-2 
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drop hanging from the horizontal support ABC, and introduces a convenient 
co-ordinate system. If we calculate the energy per unit length of surface in the 
z direction in figure 2, then for half of the drop an element of length ds (in the 
x, y plane) a t  P contributes y ds, where y is the surface tension. The horizontal 
element of liquid a t  P contributes potential energy, which we shall reckon relative 
to the level ABC; thus the contribution is - (h  - y) xgpdy, where h is the height 
OB of the drop, g is the acceleration due to gravity and p is the liquid density. 
The interface between the liquid and the support also contributes to the energy 
an amount proportional to the length BC which we may write as bx,, where b 
is a constant. Thus if the total energy of the whole drop per unit length in the 
z direction is 2E, we have 

If 2A is the total area of the cross-section of the drop, then 

A = lohxdy. 

For a given value of A,  the value of E will depend on the shape x(y) of the drop. 
The equilibrium profile will be that which minimizes E,  subject to the con- 
dition that A is constant. Applying the standard methods of the calculus of 
variations, we obtain the well-known equations relating hydrostatic pressure, 
surface tension and the curvature of the surface, and find that the profile of the 
drop must cut the y axis at  right angles at 0, and that we also must have 

b = - 7 ~ 0 ~ 8 ,  

where 8 is the angle of contact shown in figure 2. In addition, it follows that there 
cannot be corners in the profile and that the Weierstrass condition for a strong 
minimum is satisfied by the integrand in the definition of E. This formal ap- 
proach of course merely reproduces the results usually derived directly by simple 
physical arguments. 

It will be convenient to use dimensionless variables, choosing (y/pg)* as the 
unit of length and defining K as the height of the drop and 2h as the length of the 
drop in contact with the support, i.e. 

K = h(Y/Pd-+, A = Xo(y/Pg)-*. 

Corresponding to the energy E and the area A we shall introduce dimensionless 
quantities E, and a! defined by 

E, = Ey-$(pg)B, CI = Apg/y. 

Differentiation will be indicated by a suffix, e.g. xu = dx/dy. With these definitions 
the basic equations can be written as 

P U  

r K  

a = J -xdy, 
0 
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and according to the rules of variational calculus we require that the first 
variation of E, -pa, where ,u is an arbitrary multiplier, must vanish. The Euler- 
Lagrange equation immediately gives the familiar result 

Y -p  = d[x,( 1 + x;)-*]/dy 
= xyy( 1 + x;p. (3) 

In the usual derivation of (3) by considering the pressures, the left-hand side 
corresponds to the hydrostatic pressure and the right-hand side to the pressure 
due to the surface tension and the curvature. From (3) it will be seen that p 
is the magnitude of the curvature of the profile of the drop at  the apex 0, where 
y is zero. Also, when y is equal to p, the profile has an inflexion point. 

Equation (3) may be integrated immediately with the result 

(4) 1 2  2y -py  + 1 = xu( 1 + x;)-*, 

u = py - *y2, (5) 

so that x; = ( l -U)2/U(2-U) .  (6 )  

This shows that o < u < 2 .  (7) 

0 < p .  (8) 

If we put u = 2 sin2 4 (9) 

xy = cot 24) (10) 

where we have used the condition that when y is zero xy is infinite. We now put 

Since y is necessarily positive, it follows from ( 5 )  that 

equation (7) is automatically satisfied and we find 

and thus tan 2 4  is the gradient of the curve at  P (see figure 2). At C, xu is equal 
tolcot 0, so that there 4 is equal to $9. From ( 5 )  

y =pG-(,u2-4sin24)t, (11) 

so that, when 4 is zero y is zero. From (10) and (1 1) we obtain 

which may be expressed in terms of elliptic integrals of the first and second 
kinds : 

(13) 

Provided p is greater than 2, the value of 4 varies between zero and $0, which 
corresponds to its value at the point C. From (1 1) we see that y is never equal to 
p, and hence the profile does not have a point of inflexion. However, if p is less 
than 2, equation (13) is transformed by standard methods into 

x = p-l( 2 - p2) F (2p-1, 4) + puE( 2p-1, 4) . 

x = 2 m p ,  $1 - F ( h  @), (14) 

where sin@ = 2p4sin4. (15) 
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K 

FIGURE 3. Area a as a function of height K.  

The maximum possible value of q5 is therefore sin-l($p), when from (11) we see 
that y is equal to p, i.e. the inflexion point has been reached. To obtain the rest 
of the profile, we note that (5) also has a solution 

y = p + (p2- 4 sin2q5)+, (16) 

which corresponds to the part of the curve beyond the idexion point y = p 
up to the point C, where q5 is equal to $6. 

After straightforward manipulation we find in this region 

x = 4E($p) - 2 W p )  - 2E($p, $1 + q + p ,  $), (17)  

where E($p)  and I<($p) are the complete elliptic integrals. 

grating. With the condition that xu is infinite when y is zero we obtain 
The cross-sectional area may be obtained by multiplying (3) by xy and inte- 

u 
-px+xy- joxdy = -(1+x2)-4, Y 

and if y is put equal to K we find 

a-Kh+pA-sinO = 0. (19) 

For a particular choice of 6 and p, if p exceeds 2 we calculate K and h from (I I) 
and (13) respectively, with q5 equal to +6. If p is less than 2,  equations (16) and 
(1 7) are used. The area of the cross-section is then calculated from ( 19). 

In  figure 3 values of a have been plotted as a function of K for different angles 
of contact. As Neumann showed for zero contact angle, there is a maximum in 
the possible values a may attain. Below this maximum two profiles exist having 
for the same area a two different heights K. As an example, the profiles are shown 
in figure 4 for a contact angle of 30" corresponding to the points A and B in 
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FIGURE 4. Two profiles of equal area. 

figure 3. It will also be seen that, if we have an equilibrium shape, then by draw- 
ing the horizontal surface from which the drop hangs at a different level we auto- 
matically obtain an equilibrium solution for a different area and contact angle. 

From figure 3 we see that, as liquid is added to the drop, the height K increases 
until the maximum cross-sectional area is reached. Addition of more liquid would 
then result in a situation for which no equilibrium is possible, and so liquid would 
certainly separate from the drop. However, if the maximum cross-section were 
exactly attained and liquid were withdrawn, the figure shows that it is possible 
for the drop height K to continue to increase, since points such as B represent an 
equilibrium. Obviously in practice this region would be very difficult to enter, 
since a slight excess of liquid above the maximum would cause the drop to break, 
while an amount less than the maximum would make it impossible to reach points 
like B by removal of liquid. 

When we know the equilibrium profile of the drop, we can evaluate its energy 
by means of (1). It is interesting that the energy is at a minimum when a has its 
maximum value. This can be shown as follows. The profile x is a function of both 
y and the parameter y, and likewise for a given contact angle K and h depend on 
p. If we differentiate (1) with respect to y, we finally obtain 

dE,/dp = (y - K )  daldy. (20) 

(In the derivation of this expression we have used the result 

which is obtained by integrating by parts and using (3). Evaluation of the limits 
by means of Taylor series and the subsequent use of (19) then gives (20) after 
straightforward algebra.) Since for drops with very small volumes the profile 
does not at  first have an inflexion point (unless the contact angle is zero) initially 
p exceeds K and therefore E, and a increase together. Eventually y is less than K 
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and the profiles possess an inflexion point, and hence as a increases E, decreases. 
When a attains its maximum, Eo therefore passes through a minimum. 

The dimensionless factor p - K occurring in (20) corresponds to the pressure in 
the liquid at the horizontal support. Thus (20) has a simple physical interpreta- 
tion: the change in energy dE, is equal to the change in volume da multiplied by 
the pressure in the liquid at  the level of the support. 

One further property of the equilibrium solution will be derived here for use 
later. From (4), when y is put equal to K, we find 

+ K 2 - p K +  i = GOSe,  

and so by differentiation 
(K-p)dK/dp-K = 0. 

3. Stability 
The stability of the equilibrium of the drops can be investigated by examining 

the change in energy when a small perturbation is made. In  accordance with our 
assumption that the volume in the drop is fixed, the perturbations must be such 
as to leave the volume unchanged, but both the height of the drop and its length 
in contact with the support may be altered. 

We therefore determine the change SE, in the energy when small changes SK 
and Sh are made in K and A. We suppose that the equilibrium profile x(y) is 
replaced by x + ss(y), and that 8, SK and Sh are all of the same order of magnitude. 
If we put 

then from (1) we find 
F(y, x, xu) = (1  + x;)& + XY, (24) 

The condition for constant volume is 

We shall suppose that the perturbation s(y) vanishes for values of y in the range 
(0, yo), that is, the profile is undisturbed in a region close to the apex (see figure 5). 
Later the consequences of allowing yo to tend to zero will be examined. Thus, 
the condition (26) becomes 

0 = hSK+&8K2COte+€ Sdy+o(€3) ,  (27) 

(28) 

s: 
and we have “(Yo) = 0 

and h + Sh = X ( K  + 8K) + € S ( K  + SK), 

€ S ( K )  = 6h-6KCOt8fO(€2). 
which is equivalent to 

(29) 

(30) 

We also need the expansions of the profile x(y) near C and 0, which are 

K-ZJ = (h-x)tan8+O(h-x)2, (31) 

(32) x = (2y/p)4 + O(y%). 
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FIGURE 5. The variation of the profile. 

The value of SE, can now be evaluated from (25) as far as terms 0(e2). In  simpli- 
fying the expressions obtained, we use the equilibrium condition given by (3), the 
value of a from (19) and the condition in (27). After lengthy algebra, we obtain 

We have now to examine the dependence of SE, on the perturbation. If 
SE, is always positive, the equilibrium will be stable, but if by a suitable choice 
of Sh, SK and ss(y) the value of SE, can be made negative, the equilibrium will be 
unstable. The perturbation s(y) has to satisfy the conditions (27), (28) and (30), 
but is otherwise arbitrary. If we choose s(y) so that the integral in (33) is as small 
as possible (given particular values 6h and SK) we shall have made SE, as small as 
possible. If this minimum value is never negative, no matter what Sh and 6~ 
may be, the equilibrium will be stable. 

It is therefore necessary to find the minimum value of the integral in (33), 
subject to the condition (27). This again is an isoperimetric variational problem, 
and accordingly we consider the first variation of 

J = [S:( 1 + z:)-$ + 2ps] dg, ( 34) s: 
where 213 is an arbitrary multiplier. The Euler-Lagrange equation for the vanish- 
ing of the first variation is 

d[s,(l+ x3-31py = p ,  (35) 
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which is the Jacobi accessory equation for the variational treatment of the energy. 
A solution to this equation can always be found by differentiation of the equili- 
brium equation (3), from which we obtain 

and also 

.I - [-(I +x$)-3 = - 1, 

I 
a ax, 

dY a,u 
&[-&l+x;)-8 a ax, = 1. 

It is therefore obvious that the general solution of (35) can be written as 

s = Zx,+(Z-p)ax/a,u+m, 

where 1, m and p are constants. Equation (28) then requires 

0 = IX,(YO) + (1 -P) (ax/aP),o + m 

and if terms O ( E )  are omitted (30) and (27) give respectively 

c1(8h  - 8~ cot 8) = I cot 8 + ( I  - p )  (ax/a,u), + m, 

- €-I h8K = l(h - X o )  + (1 - p )  

The value of the integral in (33) can be evaluated by integrating by parts 
and the use of (35). We find 

= (6h - 6K C O t  0) ( P K  - IF) f p h  8K, (42) 

where the value of xyy from (3) and ax,/a,u obtained from (4) have been inserted. 
Equations (39), (40) and (41) can be solved to give I, m and p in terms of 6h and 

8 ~ .  These values may be inserted in (42) and finally from (33) the value of SEo 
can be found. The result is obviously of the form 

6E, = ash2 + b 6h 6~ + c h2, (43) 

4ac 2 b2, (44) 

and (if a is positive) 6Eo will always be positive provided 

which serves as the criterion for stability. 
Since the algebra involved in simplifying this inequality is so complicated, 

a brief outline of the steps has been placed in the appendix. It is shown that (44) 
finally reduces to the condition 

We shall later consider the behaviour of this result when yo tends to zero. 
If we had chosen yo equal to zero initially, then since x, tends to infinity as yo 
tends to zero, and s must be zero there, it follows from the expression (38) that I 
and m would have to be zero. The expression for s would then simply be - p  axlap. 
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This contains only one adjustable constant, but two conditions, namely (30) and 
(27 ) )  have to be satisfied. This can only be achieved if there is a particular rela- 
tion between 6h and 6 ~ .  Equation (30) gives 

(46) SA - 6 K  cot e = - €p(ax/ap), + o ( E . 2 ) )  

By differentiation of ( 2 )  we find 

Hence by eliminating p from (46) and (47) we find 

We can now evaluate 6Eo in (33), using (42) (with Z and m zero), the value of p 
from (46) and the value of Sh/&. The final result is 

da 
6Eo/6K2 = - (p- K )  - A)-'& (h2 - 2 a  C O t  8) .  

dK dK 

4. Discussion 
The stability criterion (45) has been deduced from the requirement that the 

change in total energy is positive when the shape of the drop is distorted by a 
small perturbation which extends over the surface between the height yo and the 
point of support, where y is equal to K .  Any naturally occurring perturbation 
must in fact extend over the whole surface, and so we must examine the behaviour 
of the criterion as yo approaches zero. 

Let us first examine the inequality (45) when yo tends to K .  Use of the expres- 
sion (32) and equation (48) shows that in this limit the criterion reduces to the 
condition 

which is always true. 

in (45) by means of (32), we find 

0 6 h2p, (51) 

If we now allow yo to approach zero, where xy is infinite, and evaluate the terms 

0 < p(da/dK) Xy + o(&. ( 5 2 )  

It follows that, if da/dK is negative, as yo approaches zero the inequality is not 
satisfied. (The occurrence of the factor xu, which is infinite at  the origin, arises 
from the cancellation of factors in the manipulation of the oondition (44), as 
explained in the appendix. We are only interested in the sign of the term in (52).) 
Hence, when the cross-section a of the drop in equilibrium decreases with increas- 
ing height K, the drop is unstable. When a increases with K ,  the drop is stable. 

It is of interest to examine the behaviour of (50)) which is deduced by assuming 
at  the outset that the perturbation extends over the whole surface. It can be 
shown by a rather lengthy argument which we omit that, in this expression, the 
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FIGURE 6. The stability criterion according to  (50), showing spurious regions 
of stability when daldlc is negative. 

right-hand side is always positive whenever &/dK is positive. Thus the result here 
agrees with that obtained from the limiting process applied to (45). However, a 
difference appears when daldk- is negative. It is indeed true that, as daldic passes 
from positive to negative values, 6Eo in (50) changes from positive to negative, 
but for some regions where da/dK is negative, 6Eo in equation (50) may be 
positive. This is illustrated in figure 6 for contact angles of 70" and 140". 
Examination of the gadients of the curves and the expression (50) reveals a 
region where 6E, is positive although daldk- is negative. This result arises be- 
cause equation (50) corresponds to a particular value of the ratio 8h/6KK, and is 
not a correct description of the conditions when the perturbation is entirely 
arbitrary and 6h and 6~ can take any values whatever. 

Figure 6 also illustrates another feature of the results. It will be seen that, for 
a contact angle of 140", the value of h becomes negative before the maximum 
theoretical cross-section is reached. This obviously corresponds to physically 
impossible conditions, and the drops must fall when h becomes zero. Up to 
this stage the drops are stable, since daldlc is positive. 

The outcome of the analysis is therefore the conclusion that, whenever the 
volume of the drop increases with increasing height, the equilibria are stable. 
Those equilibria in the region where the volume decreases with increasing height 
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are unstable. These results are in agreement with the assertion made by Wangerh 
in his comments on Neumann's work. An interesting feature of the problem is 
the need to approach the perturbed state by allowing a perturbation limited to a 
part of the surface to extend over the whole surface, rather than assume this at 
the outset. 

I am grateful for helpful discussions with Mr Marriage of these Laboratories, 
for the stimulus provided by the numerical investigations which Dr Padday and 
his colleagues have completed, and for the comments of a referee on the presenta- 
tion of this work. 

Appendix 
We have to solve (39), (40) and (41) for I ,  m andp. We defme 

~ ~ D / ~ ~ s ~ ( l  +xi)-%dy = A,(6h - &cot + B,h6~(8h - 6~ cot 8) + C,A26~2, (A8) 

where A, = (K-,U)L,+KM,, (A 9) 

B, = (K -p)  L + KM + A, +HI, (A 10) 

C,=L+M.  (A 11) 

26E, = A16h2+B16A6K+C16K2, (A 12) 

A,  = A,D-l, (A 13) 

I?, = [ A B , + 2 D ( ~ - ~ ) - 2 A , c o t 8 ] D - ~ ,  (A 14) 

This result is substituted in (33) and we obtain 

where 

C, = [AD - (K -411) D cot 8 +Ao Cot2 8 - A B, cot 8 + h2 C,] D-l. (A 15) 
We have now to consider the signs of A ,  and D. Prom (3) we have 

xm = ( y - p W + q * ,  (A161 
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and from (4) we derive 

Then, from the dehitions in (A9), (AZ) and (A4) 

aX,lap = --y(i + X p .  

which. is negative. The sign of D may be found as follows. Put 

Then from the definitions and the expression (A 5) we h d  

D = -p(rzro-r:). 

Since 
J % 

is always positive, it follows that 

and hence D is negative. Thus, A, in (A 13) is positive. 

Tor2 >, r:, 

The expression (A 12) for SE,, will therefore always be positive provided 

4AiC1>, B:. (A211 
In  manipulating this expression, reference to (A 13), (A 14) and (A 15) shows that 
on the left-hand side there is a term 4A2A,C,D-1 and on the right-hand side a 
term h2B& Now from the expressions (A 16) and (A 17) we find that 

L,+H1 = (K-p)LfKM, 

and so from (A 10) we may write 

Bt = 4[(K - p) L + KM] [Ll +MI]. (A23) 

4A0C0-BE = -4pD, (A241 

With this result, we then find 

and when this is used in (A 21) we find that, after cancellation of common terms 
appearing on both sides of the inequality, we can divide throughout by D.  Since 
this is negative, the sense of the inequality is changed after the division, and we 
obtain 

ph2 + ~ B , ( K  -p) - [A + (K -p) cot 6'1 A,  + D(K - P ) ~  2 0. (A25) 

When the expressions for L, L, etc. are integrated and inserted in A,, B, and D, 
after straightforward manipulation we obtain (45), when (23) is used. 

has been cancelled on both sides 
of (A 21). If this were retained, then both sides of (A 25) would be divided by ID(. 
As yo tends to zero, ID( is O(x,), and the resulting leading term in the inequality 
would remain finite, other terms being O(z;l). However, we are only interested 
in the sign, so that (A 25)  is sufficient for our purposes. 

It should be noted that the common factor 
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